
Mobile Application
Programing: Android
OpenGL Environment

Activities
Apps are composed of
activities

Activities are self-contained
tasks made up of one
screen-full of information

Activities start one another
and are destroyed
commonly

Apps can use activities
belonging to another app

Fragments
Acts like a sub-activity

Attached and removed from an
activity using the FragmentManager

Attachment or removal of many
fragments with FragmentTransaction

Lifecycle tied to parent activity

Adds onAttach / onDetach and
onCreateView / onDestroyView

Hardware Acceleration

Hardware Acceleration

Hardware Acceleration

2 Processors

Hardware Acceleration

Hardware Acceleration
192

Processors

Hardware Acceleration

OpenGL ES
C-Based Performance-Oriented Graphics Library

Wrapper libraries provided for Java, C#, etc.

Produces 2D images from 2D or 3D geometric data

Mobile version of OpenGL

Includes nearly all OpenGL functionality

Removes seldom-used or legacy features

Used by non-mobile platforms also (eg. Playstation 3)

OpenGL Environment
android.opengl.GLSurfaceView

GLSurfaceView.Renderer

GLES20 (C Library Wrapper)

Program

Vertex Shader

Fragment Shader

Uniform Variables

Attribute Arrays

 GLSurfaceView
 ↳Renderer
 ↳GLES20
 ↳GL Calls

OpenGL ES 1 vs ES 2

Fixed-Function Pipeline vs. Programmable Pipeline

ES1 has only fixed processes, manipulating geometry
and generating fragments in a standardized process

ES2 has some fixed processes and 2 programmable
processes for the data input into OpenGL

ES2 is much simpler than ES1, but requires knowledge
of the OpenGL Shader Language

Data read from
Scene and OBJ files

OpenGL ES
Primitive

Processing
Vertex
Shader

OpenGL ES
Rasterizer

Fragment
Shader

OpenGL ES
Fragment

Processing

Fragments resulting
from rasterization Frame Buffer

Data read from
Scene and OBJ files

OpenGL ES
Primitive

Processing
Vertex
Shader

OpenGL ES
Rasterizer

Fragment
Shader

OpenGL ES
Fragment

Processing

Fragments resulting
from rasterization Frame Buffer

Vertex Shader

Receives a vertex from OpenGL after
minimal processing

Modifies incoming vertex in some way
using uniform variables where needed

Outputs the vertex

May also output additional data for
the fragment shader to use

Data read from
Scene and OBJ files

OpenGL ES
Primitive

Processing
Vertex
Shader

OpenGL ES
Rasterizer

Fragment
Shader

OpenGL ES
Fragment

Processing

Fragments resulting
from rasterization Frame Buffer

Fragment Shader

Receives a fragment from OpenGL
resulting from rasterizing a primitive

Chooses a color for the fragment
based on data given by vertex shader
and uniform variables

Outputs the fragment color

Data read from
Scene and OBJ files

OpenGL ES
Primitive

Processing
Vertex
Shader

OpenGL ES
Rasterizer

Fragment
Shader

OpenGL ES
Fragment

Processing

Fragments resulting
from rasterization Frame Buffer

